
MA 552, Spring 2011

Topic 1. Hamming codes

(1) Do not submit anything for this problem in written. This problem will
be stated again later in this problem set in more appropriate terms. It is
however possible to solve this problem without any “science”.
(a) Alice and Bob play a game. Alice has a secret integer number from 0

to 10, Bob wants to guess it. Bob can ask yes/no questions, and Alice
is allowed to lie once (at a moment of her choice). Show that Bob can
succeed in 7 questions.

(b) Suppose you need to transmit 4 binary bits of data over a not entirely
reliable channel. More specifically, there is a chance that 1 bit in a
transmission will be corrupted (the possibility that more than 1 bit
can be corrupted is neglected). Show that you can transmit a message
that consists of 7 bits so that the receiving party will be able to recover
the original message regardless of where the corruption occurred and
whether it occurred.

These two problems are described by the same mathematical setting.
Consider a set WN = {0,1}N , the set of all possible sequences of 0’s and
1’s of length N . A subset C ⊆ WN is called a code. We say that code C
corrects a single error if any two elements c, c′ ∈ C differ at least in 3 places.
Elements of C are interpreted as messages.

The term “single error correcting code” is explained by the following
consideration: if after transmission one (or none) digit of a message c ∈ C
gets altered, the result still differs from any other c′ ∈ C at least in 2 places,
and differs from original c at most in 1 place, so if the receiving party knows
that only elements of C are possible messages, they can recover the original
message (thus “correcting a single error” in a transmission).

The number ∣C ∣ of elements in C is the number of different messages that
can be transmitted using C. Naturally, the closer ∣C ∣ is to ∣WN ∣ = 2N the
more efficient communication is. For example, one can suggest the following
code C (called “triple repetition code”): all sequences of 0,1 where each
digit is repeated 3 times (assume here that N is a multiple of 3). If one digit
in a message c ∈ C gets altered, it is still easy to recover c. However, this is
an example of highly inefficient code: ∣C ∣ = 2N/3, so “useful information” is
only N/3 bits long, compared to N bits in the whole message.

Problems (1a) and (1b) suggest to find C ⊆W7 with ∣C ∣ ≥ 11 and ∣C ∣ ≥ 16,
respectively.

Search for efficient error correcting (or detecting) codes is an established
and well-developed branch of coding theory. Nearly every “real-life” mas-
sive data transmission (cell phones, satellite broadcasting, computer net-
works, data compression, read/write operations with any kind of memory
in a computer, data storage) includes some kind of error control. The par-
ticular code introduced in the problems below, despite being one of the
earliest and simplest examples, is actually used in certain types of RAM.

While generally finding a “good” ∣C ∣ is a combinatorial question, signif-
icant progress has been made employing linear algebra techniques.

For the rest of this topic, fix field F to be Z2, the field on two elements
0,1 with usual arithmetic operations modulo 2. (By the way, does not hurt
to check that it really is a field.)

(2) Let V be a vector space over F of dimension N . Prove that V has precisely
2N elements.
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Let c, c′ ∈WN . Let c = (c1, c2, . . . , cN), c′ = (c′1, c′2, . . . , c′N). We say that
Hamming distance between c and c′ is the number

dH(c, c′) = ∣{1 ≤ i ≤ N ∶ ci ≠ c′i}∣,
that is, dH(c, c′) is the number of places where c and c′ differ.

Then our condition on elements of C can be reformulated as follows: we
are looking for C ⊆WN such that

min
c,c′∈C,c≠c′

dH(c, c′) ≥ 3.

The value dH(C) = min
c,c′∈C,c≠c′

dH(c, c′) is called the minimum Hamming

distance of code C.
From now on, we treat WN as an N -dimensional vector space over F ,

with coordinate-wise operations.

(3) Let c, c′ ∈WN . Prove that dH(c, c′) = dH(0, c − c′).

(4) Suppose C is a linear subspace of WN . Prove that

min
c,c′∈C,c≠c′

dH(c, c′) = min
c∈C,c≠0

dH(0, c).

Now, instead of looking for an arbitrary C ⊆ WN , we restrict ourselves
to those C which are linear subspaces. The problem above explains that
in such case, it is much easier to control the minimum Hamming distance
of C: one only needs to find what is the minimum number of 1’s in a non-
zero element of C. (On the other hand, we may miss out on some “good”
non-linear subsets C. Let’s not worry about it right now.)

(5) In problem 1a, Bob needs to come up with a C ⊆ W7 such that ∣C ∣ ≥ 11.
What is the minimal possible dimension of a linear subset C of W7 such
that ∣C ∣ ≥ 11? What is the minimal possible dimension of a linear subset C
of WN such that ∣C ∣ ≥ n?

Next idea is as follows. Since we want to deal with linear subsets of WN ,
why don’t we describe C by the corresponding linear system.

(6) Let H ∈ Fm×N be an m × N matrix over F = Z2, let X be a column of
variables (x1, . . . , xN). Denote CH ⊆WN to be the linear space of solutions
of the system

HX = 0.

(a) In terms of columns of matrix H, describe when HX = 0 has a solution
c with dH(0, c) = 1. That is, answer the following question: suppose
for some X of the form

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

we have

H ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

0
⋮
⋮
0

⎞
⎟⎟⎟
⎠

What can one say about columns of H?
—— see next page ——
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(b) In terms of columns of matrix H, describe when HX = 0 has a solution
c with dH(0, c) = 2.

(7) If columns of C have none of two properties obtained in the previous prob-
lem, then any non-zero solution c of the system HX = 0 is at least distance
3 from zero: dH(0, c) ≥ 3. For a fixed m, what is the largest possible N?
(Hint: answer is N = 2m − 1.) A matrix H with the largest possible N is
denoted Hm. (Particular choice of Hm does not matter at this point.)

(8) Write matrix H3.

(9) What is the rank of Hm? (Hint: the answer is rankH =m.)

(10) Find dimCHm
. Find m such that N = 7 and dimCHm

= 4.

Now for each m we have found a particular code C = CHm
and found

dimC. CHm
is called (dimCHm

,N) Hamming code. For example, solution
to problem 1 is a (4,7) Hamming code. (Which corresponds to m that you
found in the problem above.)

Compare N to dimC. One can think of the number N − dimC in the
following way: in a message c ∈ C of length N there are dimC “useful”
bits, and remaining N − dimC bits are redundant “checksums”. The fewer
bits are wasted on checksums, the better. For example, in triple repetition
code this difference equals 2N/3. In the Hamming codes this difference is
a very small number compared to N .

In the remaining few problems we explain two things: 1) how the receiv-
ing party recovers original message c, given the result of transmission c′;
2) how the sending party encodes “useful” message consisting of dimC bits
into a message c ∈ C ⊆WN .

For the former question, the idea is as follows: since we have a matrix
Hm whose null space is C, why don’t we use the same matrix to decide
which bit is wrong (if any) in c′.

Suppose c ∈ C is the original message and c′ is the received message such
that c′ ∈WN and dH(c, c′) ≤ 1. Write c′ = c + e. Then

Hmc′ =Hm(c + e) =Hmc +Hme =Hme.

Note that e is a string of zeros, except for a single 1 in i-th place.

(11) Let e be as described above, that is e ∈Wn and e is a string of zeros, except
for a single 1 in i-th place. Express Hme through elements of Hm. (Hint:
which columns ofHm matter when computing Hme?) How one finds i given
the column Hme?

(12) Suppose c ∈ C and c′ ∈ WN is such that dH(c, c′) ≤ 1. Find what Hmc′

looks like if dH(c, c′) = 0 (that is, c = c′), and if dH(c, c′) = 1 and (that is, a
single error occurred in i-th place). How to recover c′, given Hmc′?

The problem above suggests the following procedure: the receiving party,
having received a message c′, multiplies Hmc′. Then, using results of the
problem, judges whether any bit was altered in transmission, and, if any,
which one. This allows to tell which c ∈ C was the original message. (Note
that if there are more than 1 error in transmission, this procedure will give
an incorrect answer.)

—— see next page ——
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Now, to the latter question. There is a simple (and also not very practi-
cal) answer: make a table of correspondence between (dimC)-bit messages
and C. There is a better way, though. As implied in problem 7, a particular
choice of a specific matrix Hm so far did not matter. Now, let’s choose Hm

of the form

Hm = (A ∣ Im) =
⎛
⎜⎜⎜
⎝

∗ ∗ ∗ ∗ 1 0 ⋯ 0
∗ ∗ ∗ ∗ 0 1 ⋮
∗ ∗ ∗ ∗ ⋮ ⋱ 0
∗ ∗ ∗ ∗ 0 ⋯ 0 1

⎞
⎟⎟⎟
⎠

where and Im is m ×m identity matrix.

(13) Write such a matrix H3. (Again, there are multiple possible matrices A.
Pick one.)

Consider i-th row of Hm. It looks like

(hi1 hi2 . . . hi,N−m 0 . . . 0 1 0 . . .0)
where the 1 is in (N −m + i)-th place. The corresponding equation is

(hi1x1 + hi2x2 +⋯ + hi,N−mxN−m) + xN−m+i = 0,

or (over the field on two elements)

hi1x1 + hi2x2 +⋯ + hi,N−mxN−m = xN−m+i.

That is, bits x1, . . . , xN−m can be chosen arbitrary and bits xN−m+i are
expressed through them (note: matrix Hm is now in row-reduced form!).

This allows to interpret bits 1 through N−m as “useful information” and
bits N −m + 1 through N as “parity checks” (bit number N −m + i checks
parity of sum of bits in places which have nonzero values of hi1, . . . , hi,N−m).

Hence the encoding procedure: given a matrix Hm of the form speci-
fied above, the sending party takes “useful information” (x1, . . . , xN−m),
computes m sums

hi1x1 + hi2x2 +⋯ + hi,N−mxN−m, i ≤ 1 ≤m,

and uses them as bits xN−m+1, . . . , xN in the transmission (x1, . . . , xN).

(14) For the matrix H3 that you picked, encode messages 0101 and 0111. Enjoy
seeing how 1 bit difference transformed into 3 bit difference.

(15) Assuming that Alice and Bob are both fluent with binary numerical system,
solve problem 1a. (Hint: start by assuming that the secret number is
b3b2b1b0 in binary notation; for example, 5 is represented as 5 = 0 ⋅ 23 + 1 ⋅
22+0 ⋅21+1 ⋅20, that is, by the binary digit string 0101. Each Bob’s question
corresponds to a bit in W7. That is, each question that Bob asks is of the
form “If b3b2b1b0 is your number in binary notation, is bsomething = 0?” or
“. . . is bsomething + . . . bsomething = 0?”.)

A final remark about Hamming codes. Let’s forget for a second about
them and go back to the original question. Suppose you have a transmitted
message of length n and suppose you know that a single error might have
occurred. How you find and correct the error without retransmitting the
whole thing? Well, one way is to split the message in first and second halves
and ask to transmit the sums of bits in the first half and second half. If
either of these two numbers does not coincide with corresponding sums in
your received message, you immediately narrow your search down to a half
of the message. Repeat this logn times and find the error.

Basing on this consideration, one may actually solve the initial problem
without any linear algebra. However, the description of the code will be
rather clumsy. Linear algebra over Z2 provides an extremely fortunate
toolset for this particular problem. One can put nails into a wall with one’s
forehead (if it is strong enough), but using hammer makes it so much easier.


